
18 The Delphi Magazine Issue 36

Under Construction:
RobotBob Internet Agent
by Bob Swart

In this article we’ll discuss the
concept of intelligent agents for

the internet. The techniques we’ll
use include CGI, FTP, SMTP and
POP3.

There are a number of web pages
on my bookmark list that I plan to
visit every week or so. However,
sometimes I just don’t have the
time and may miss an important
announcement. At other times
maybe I do visit a bookmarked site,
but nothing has changed since last
time I visited.

Now imagine a little program
that would automatically keep an
eye on a number of websites,
informing us whenever something
has changed. A bit like the sub-
scription service (or ‘channels’) of
Internet Explorer 4, or maybe even
a bit like a mailing list.

As another example, has anyone
ever tried to download a big patch
file by ftp from a site overseas (like
the BDE 4.51 patch at 10,269,420
bytes from the Inprise site)? Even
with ISDN, more often than not the
connection is broken before the
file is completely downloaded. And
with a 14.4K modem I don’t even try
to download files bigger than a
megabyte from the web.

Now imagine a little program
automatically downloading the file
for us, to a remote but closer loca-
tion, sending it to us by email, or
leaving it in a place where we can
pick it up without too much trouble
(at our own ISP, for example).

Agents And Robots
There isn’t a unique definition of a
software agent or robot. Basically,
the general idea is that they are
able to perform a certain task or set
of tasks without human interven-
tion or special monitoring. Of
course, they should be able to
communicate with a human being,
if only to receive instructions
(which websites to ‘check’ or

which file to download) or send the
answers and responses to.

By the way, the word ‘intelligent’
in combination with ‘agent’ or
‘robot’ usually indicates that the
software is able to adapt to certain
situations or changes in the envi-
ronment. This can be done, for
example, by keeping a profile of cli-
ents (or users) and adapting the
behaviour based on the informa-
tion in that profile. Alternatively,
the robot may find out that a cer-
tain website always gets updated
at the weekend, but seldom during
working days. That may be a
reason to report this finding to the
client, or only check on the week-
ends from now on.

In this article, we’ll develop two
web robots, one to download a file
by ftp and optionally send it on by
email, and another to maintain a
mailing list, for discussions or
announcements of some sort.
Making these robots truly intelli-
gent was not part of my focus for
this article, so I’ll leave that to you!

RobotBob/FTP
The first robot is called Robot-
Bob/FTP and can download a file
specified by a remote location
(URL) from the internet. We first
need to implement the FTP proto-
col. And no, I don’t want to use an
existing ActiveX control, but
rather re-invent the wheel myself
(after all, this is called the Under
Construction column, right?).

FTP stands for File Transfer Pro-
tocol, which is formally described
in RFC 959. The FTP communica-
tion model can be implemented
using sockets, just like the SMTP
protocol we implemented last
issue, or the POP3 protocol which
we’ll implement soon.

However, some time ago now,
Microsoft released WININET, a spe-
cial layer on top of the low-level
internet APIs especially for Win32

programmers. WININET offers a
higher level interface to otherwise
low-level protocols such as HTTP
and FTP. It’s really easy to use and
the best thing is the WININET unit
with the API definitions in Object-
Pascal is included with Delphi.

WININET uses something called
an ‘internet handle’ (much like
Windows uses Windows handles),
and all APIs either need or return
such a handle. For example, to
open a new WININET session, we
need to call InternetOpen, which
returns a handle which we must
use (and pass to other APIs) until
the end of our session. To close
any internet handle, we must
always call InternetCloseHandle
(so after we’ve received a handle
we can use, we should immediate
write a try...finally block, where
we close the handle in the finally
part).

To open a remote file (or URL) on
the internet, we must call Interne-
tOpenURL, which again returns an
internet handle. Now, to download
that remote file (URL) to our local
machine, we only have to make a
number of calls to InternetRead-
File, which works a bit like Block-
Read in that it copies data from the
remote file to a data buffer. We can
use BlockWrite to write the data
from the buffer to a local file, and
hence with only three WININET
functions (four if we count the clos-
ing InternetCloseHandle function),
we can write a basic but fast FTP
download routine as can be seen in
Listing 1.

Note that during the FTP process
we report the status on the stan-
dard output in increasing steps (8,
16, 32, 64, 128, 256 and 512Kb, after
which every 512Kb, until the file is
completely downloaded, or an
error occurrs (like a broken con-
nection). This gives an indication
of progress, although the web
server I used to deploy the CopyURL

20 The Delphi Magazine Issue 36

function has a T1 connection to the
internet, so even files of 10Mb and
more are downloaded in a
reasonably short time anyway.
Remember, you are downloading
to a server, not to your (client) PC.

Instructions? CGI
Now we’ve written the ‘engine’
part, or the middleware, let’s con-
centrate on the front end: the part
of the application that receives the
instructions about which URL to
download into what file, and
(optionally) who to mail it to. By far
the easiest way to do this is just like
any other CGI application, with a
CGI HTML Form and three con-
trols: one for the URL, one for the
file and one for the email address.
The Action will be the CGI applica-
tion RobotFTP.exe that we’re
about to finish, using the POST
method to send data. The CGI
HTML Form is defined in Listing 2.

And if we try RobotBob/FTP in
action as the ‘live’ URL on the
internet at www.drbob42com/
RobotBob we’ll get the display
shown in Figure 1.

Note that the email part is
optional (on purpose). If we don’t
specify an email address, then the
URL just gets downloaded to the
local file in the www.drbob42.com/
robotbob/ftp directory (which
now indeed holds the delphiQA.zip
file of just over 1Mb). While this
may not sound too useful, I think it
is, as my link to my own web server
is much faster than my link to the
Inprise website, and so is down-
loading. So if your mailer doesn’t
support messages with huge
attachments, you can skip the
email address and just make sure
the file gets effectively uploaded to
your own ISP where you can pick it
up later (but much faster com-
pared to a direct FTP from the
original website).

Response By Email
Given a URL and local filename, it
would be even more useful at times
to be able to send the file back to
our mailbox, uuencoded of course.
That way, we never have to go
through the trouble of trying to
download a big file, but instead can
use a simple robot that will FTP

procedure CopyURL(const URL, OutputFile: String);
const
BufferSize = 8 * 1024;

var
hSession, hURL: HInternet;
Buffer: Array[0..Pred(BufferSize)] of Byte;
BufferLength: DWORD;
i: Integer;
f: File;

begin
hSession := InternetOpen('DrBob',INTERNET_OPEN_TYPE_PRECONFIG,nil,nil,0);
try
hURL := InternetOpenURL(hSession, PChar(URL), nil,0,0,0);
try
Assign(f, OutputFile);
Rewrite(f,1);
writeln('Downloading...<P>');
i := 0;
repeat
InternetReadFile(hURL, @Buffer, BufferSize, BufferLength);
Inc(i);
if (i in [1,2,4,8,16,32,64]) or (i mod 64 = 0) then
writeln(i*8,'KBytes...
');

BlockWrite(f, Buffer, BufferLength)
until BufferLength < BufferSize;
Close(f);
writeln('
',(i-1)*BufferSize + BufferLength,' Bytes downloaded.');

finally
InternetCloseHandle(hURL)

end
finally;
InternetCloseHandle(hSession)

end
end;

➤ Listing 1: CopyURL.

<HTML>
<HEAD>
<TITLE>RobotBob/FTP</TITLE>
</HEAD>
<BODY BACKGROUND="../gif/back.gif">
<H1>RobotBob/FTP v1.0</H1>
<HR>
<FORM ACTION="../cgi-bin/RobotFTP.exe" METHOD=POST>
<TABLE>
<TR><TD>URL:</TD><TD><INPUT TYPE=edit NAME=URL SIZE=64></TD></TR>
<TR><TD>File:</TD><TD><INPUT TYPE=edit NAME=File SIZE=32></TD></TR>
<TR><TD></TD><TD>Optional:</TD></TR>
<TR><TD>Mail:</TD><TD><INPUT TYPE=edit NAME=Mail SIZE=32></TD></TR>
<TR><TD></TD><TD>
<INPUT TYPE=SUBMIT VALUE=Request></TD></TR>
</TABLE>
</FORM>
<HR>
</BODY>
</HTML>

➤ Listing 2: RobotBob/FTP HTML.

➤ Figure 1

August 1998 The Delphi Magazine 21

program RobotFTP;
{$I+,O+}
{$APPTYPE CONSOLE}
uses
Windows, WinINet, SysUtils, DrBobCGI, DrBobUUE, DrBobEml;
{ see previous listing for implementation of CopyURL }

var
f: Text;
Str: String;
counter: Integer;

begin
ShortDateFormat := 'YYYY/MM/DD';
writeln('content-type: text/html');
writeln;
writeln('<HTML>');
writeln('<HEAD>');
writeln('<TITLE>',Value('URL'),
' -> ',Value('File'),'</TITLE>');

writeln('</HEAD>');
writeln('<BODY BACKGROUND="/gif/back.gif">');
writeln('<H1>RobotBob/FTP v1.0</H1>');
writeln('<HR>');
writeln('
URL=',Value('URL'));
writeln('
File=',Value('File'));
writeln('
Mail=',Value('Mail'));
writeln('<P>');
ChDir('RobotBob'); { place to leave FTP-files }
{$I-}
Assign(f,'robotbob.log');
Reset(f);
counter := 0;
if IOResult = 0 then
while not eof(f) do begin
readln(f);
Inc(counter)

end else
Rewrite(f);

if IOResult <> 0 then
{ skip };

Append(f);
Inc(counter);
writeln(f,counter:4,': ', Value('URL'),' -> ',
Value('File'),' to ',Value('Mail'));

Close(f);
if IOResult <> 0 then
{ skip };

writeln('Request #', counter, ' at ',
DateTimeToStr(Now),'<P>');

{$I+}
ChDir('FTP');
if (Value('URL')<>'') and (Value('File')<>'') then begin
CopyURL(Value('URL'), ExtractFileName(Value('File')));
if Value('Mail') <> '' then begin
with TBUUCode.Create(nil) do
try

InputFile := ExtractFileName(Value('File'));
Str := InputFile;
if Pos('.',Str) > 0 then
Delete(Str,Pos('.',Str),255);

if Str = '' then
Str := 'output';

OutputFile := Str + '.uue';
Algorithm := uuencode;
try
UUCode;
with TBSMTP.Create(nil) do
try
MailServer := 'smtp.server.com';
MessageFrom := 'RobotBob';
MessageTo := Value('Mail');
MessageSubject := 'Automatic E-mail using SMTP';
MessageText.Add('Hi '+Value('Mail')+',');
MessageText.Add('');
MessageText.Add('URL='+Value('URL'));
MessageText.Add('File='+Value('File'));
MessageText.Add('UUCode='+OutputFile);
MessageText.Add('Mail='+Value('Mail'));
MessageText.Add('');
System.Assign(f,OutputFile);
Reset(f);
while not eof(f) do begin
readln(f,Str);
MessageText.Add(Str)

end;
System.Close(f);
Erase(f);
MessageText.Add('');
MessageText.Add('Groetjes,');
MessageText.Add(
' RobotBob - RobotBob@drbob42.com');

writeln(
'<P>Sending mail to ',Value('Mail'),'...');

SendMail;
writeln('<P>Sent.');

finally
Free

end
except
on E: Exception do
writeln('<P>Error: ',E.Message)

end
finally
writeln('<P>Done.');
Free

end
end

end;
writeln('</BODY>');
writeln('</HTML>')

end.

➤ Listing 3: RobotFTP.

and email the results to us. Pro-
vided that our mail client can
handle messages with big attach-
ments, this should help when
downloading the next patch of
Delphi, Windows 98, Internet
Explorer or whatever.

In the last issue, we developed
the TBSMTP component and this
time we also need the TBUUCode
component to uuencode the (usu-
ally binary) attachment. The TBUU-
Code component is based on code
from Under Construction in Issue 4,
November 1995. Full 32-bit source
code is on the accompanying disk
with this issue. Apart from these
two components, we also need the
DrBobCGI unit (first described in
Issues 29, 30 and 33) to obtain the
CGI Form variables the user
specified.

The RobotBob/FTP program is
indeed a standard CGI application:
using the DrBobCGI unit, it only

needs to parse the three input
fields URL, File and Mail. It then
uses the CopyURL routine to down-
load the URL to the local filename,
and optionally sends the uuen-
coded local file to the email
address specified in Mail (please,
don’t use this to send mailbombs to
your friends, and I do keep a logfile
of all use of RobotBob/FTP on my
site...).

Note that the two calls to
ExtractFileName on Value(‘File’)
are actually needed to prevent
anyone from downloading a CGI
executable to my cgi-bin directory
(by downloading hack.exe to
..\..\cgi-bin\hack.exe or \cgi-bin\
hack.exe for example). This could
violate system integrity, of course,
and now I’m sure that every down-
loaded file will end up in the
/RobotBob/FTP directory.

As an example of using
RobotBob/FTP, I always like to
download the latest collection of
Delphi FAQ items from Inprise’s

website. I once found out that
Inprise keeps an archive of these at

www.inprise.com/devsupport/
delphi/qanda/
delphiFAQArchive.zip

Of course, ideally I should check if
this file has changed before trying
to download it, but maybe that’s
something I can teach my robot.

RobotBob/FTP reports the
number of the request (Figure 2).
In fact, it keeps a logfile of down-
loaded files, including the recipi-
ent of the downloaded file, so this
can be used as a start of the user
profile. I can enhance the
RobotFTP with some location
detection code, that may detect
the fact that a certain user mainly
downloads files from the Inprise
developer support for Delphi
download area. That might be a
reason to send this particular user
a list of new files that appear in that
particular location on a weekly

22 The Delphi Magazine Issue 36

basis, so its easier for the user to
decide which files (if any) to down-
load and email this time.

Instructions By Mail
Now it’s time to consider those of
us who are unable to connect to
the internet during the day
(because they have to operate on a
company intranet within a firewall,
for example). If this applies to you,
then I know how you feel, because I
also only have internet access at
home, unless I want to go to the
library. And yet I want to be able to
download some files right now,
and get them to my mailbox!

For this to work, all we need is
the ability to send instructions by
email rather than by CGI. Email
usually gets through every firewall,
although it may encounter some
delays along the way.

Anyway, to be able to send email
instructions to RobotBob/FTP, we
have to make sure RobotBob in
turn can both receive and read
those email messages. And where
we used SMTP to send messages,
we’ll now use POP3 to read mes-
sages, as seen in Listing 4 which
presents my TBPOP3 component.

POP3 is a protocol that can be
implemented using sockets and
thus Delphi’s TClientSocket com-
ponent, connected to Port 110 (as
described in RFC 1081 and 1725) is
what we need. In fact, for the POP3
component I use a technique simi-
lar to the one I used for SMTP, with
the differences only defined by the
difference in ‘communication’
between POP3 and SMTP.

With the POP3 protocol,
we start by sending the user-
name (USER) and password
(PASS) to make ourselves
known, and get permission
to access the mailbox. We
can then use STAT to find out
how many messages are
waiting (if any), RETR to
retrieve a single message,
and DELE to delete a specific
message. RETR and DELE both
need a message number as
their argument, of course.
Finally, we can QUIT (making
all changes to the mailbox
permanent) or RSET (reset
the mailbox, undeleting
deleted messages).

The only other thing
worth noticing is that a RETE
command may not return
the entire message at once. The
POP3 mail server I used for my test-
ing only returned blocks of about
8Kb at a time, which means we
have to loop and add blocks until
we reach the end (which is
denoted by a single ‘.’ on an empty
line, which is the last line of the
message).

Note that TBPOP3 only compiles
with Delphi 4 (a good reason to
upgrade?), as I already used the
new, very handy, feature of
dynamic arrays to store the
(unknown number of) messages. If
you need to use this component
with Delphi 3, you can simply
replace the Array of String with a
StringList, and use that structure
to store the content of each email
message.

I leave it as an exercise for the
reader to implement the last step,
and design a ‘command language’
and accompanying parser for
RobotBob/FTP in order to receive
its instructions. We’re continuing
now with yet another application
(pun intended) for the TBPOP3 com-
ponent, a dedicated mailing list.

RobotBob/Mail:
Distribution List
Having a TBPOP3 component avail-
able opens a number of new
possibilities for RobotBob. We can
now send and receive email mes-
sages and respond to them in a
semi-intelligent manner.

As an example, I’ve set up a
special email account (robotbob
@drbob42.com) that is only used
to receive messages and will for-
ward these messages to a group of
people who are subscribed to the
RobotBob mailing list. People
inside the list only need to send
messages to RobotBob@drbob42
.com, and automatically everyone
on the list will get the message in
their mailbox.

This is very useful for a news or
announcement mailing list, or for a
group discussion list (where multi-
ple people want to discuss certain
things together, without having to
‘CC’ everyone at all times). It’s
almost like a newsgroup, but again,
this feature should also be
available to those of us who don’t

Delphi Dynamic Arrays
Dynamic arrays specify type information (the number of dimensions
and the type of the elements) but not the number of elements. Thus,
our fMessage: Array of String; declares a dynamic array of strings.

Dynamic arrays do not have a fixed size or length. Instead, memory
for a dynamic array is allocated when we pass it to SetLength, such as the
call to SetLength(fMessage, 42).

Dynamic arrays are always integer-indexed, always starting from 0,
and we can use the High function to return the highest possible valid
index of the dynamic array. Note that I actually used the dynamic Array

of Strings as implementation for the indexed property Message, using the
GetMessage function to return the appropriate string at the specified
index of the dynamic array (or an empty string if the index was out-of-
bounds).

All in all, I find dynamic arrays to be a very convenient addition to
Delphi’s Object Pascal language.

➤ Figure 2

August 1998 The Delphi Magazine 23

have access to the ‘outside world’,
and only have email.

Without thinking too much
about the way the application is
actually running, we can first focus

unit DrBobPOP;
interface
uses Classes, ScktComp;
type
TBPOP3 = class(TComponent)
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

public
procedure ReadMail;
procedure DeleteMessage(Nr: Integer);

protected
_Socket: TClientSocket;
Step,Mess: Integer;
procedure SocketRead(Sender: TObject; Socket:
TCustomWinSocket);

procedure SocketWrite(Sender: TObject; Socket:
TCustomWinSocket);

private
fMailServer: String;
fUser: String;
fPassword: String;
fMessages: Integer;

published
property MailServer: String
read fMailServer write fMailServer;
property User: String read fUser write fUser;
property Password: String write fPassword;

protected
function GetMessage(Index: Integer): String;

public
property Messages: Integer read fMessages;
property Message[Index: Integer]: String read
GetMessage;

private
LastSocket: TCustomWinSocket;
fMessage: Array of String; // Delphi 4 feature
Status: String;

end;
implementation
uses
SysUtils, Forms; { for Application.ProcessMessages loop }

const
St_USER = 1;
St_PASS = 2;
St_STAT = 3;
St_RETR = 4;
St_QUIT = 5;

const
CRLF = #13#10;

constructor TBPOP3.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
_Socket := TClientSocket.Create(Self);
_Socket.Port := 110;
_Socket.OnRead := SocketRead;
_Socket.OnWrite := SocketWrite;
LastSocket := nil;
Step := 0

end {Create};
destructor TBPOP3.Destroy;
begin
_Socket.OnRead := nil;
Step := St_QUIT;
if Assigned(LastSocket) then
LastSocket.SendText('QUIT'+CRLF);

_Socket.Free;
_Socket := nil;
fMessage := nil;
inherited Destroy

end {Destroy};
function TBPOP3.GetMessage(Index: Integer): String;
begin
if Index in [0..High(fMessage)] then
Result := fMessage[Index] else Result := ''

end {GetMessage};
procedure TBPOP3.SocketRead(Sender: TObject;
Socket: TCustomWinSocket);

var
EOM: Boolean;
i: Integer;

begin
LastSocket := Socket; { talk back ? }
Status := Socket.ReceiveText;
EOM := Pos(#13#10'.'#13#10,Status) = Length(Status)-4;
while (Length(Status) > 0) and
(Status[Length(Status)] in [#10,#13]) do
Delete(Status,Length(Status),1);

case Step of
0: Step := St_USER;
St_USER :

if Pos('-ERR',Status) > 0 then
Step := St_QUIT

else
Step := St_PASS;

St_PASS :
if Pos('-ERR',Status) > 0 then
Step := St_QUIT

else
Step := St_STAT;

St_STAT :
if Pos('+OK',Status) = 1 then
try
try { get number of messages }
Delete(Status,1,3);
while Status[1] = #32 do Delete(Status,1,1);
Delete(Status,Pos(#32,Status),255);
fMessages := StrToInt(Status);
Mess := fMessages;
if fMessages > 0 then begin
SetLength(fMessage,Mess); // Delphi 4 feature
for i:=Pred(fMessages) downto 0 do
fMessage[i] := ''

end
except
fMessages := 0

end
finally
if fMessages <= 0 then
Step := St_QUIT { Bye, Bye }

else begin
Status := '+OK'; { retrieve first message }
Mess := 1;
Step := St_RETR

end
end;

St_RETR :
begin
fMessage[Pred(Mess)] := fMessage[Pred(Mess)] +
Status;

if EOM then begin
Delete(fMessage[Pred(Mess)],1,Pos(#13#10,
fMessage[Pred(Mess)])+1);

Delete(fMessage[Pred(Mess)],
Length(fMessage[Pred(Mess)]),1);

Inc(Mess);
Status := '+OK' { retrieve next message }

end;
if Mess > fMessages then
Step := St_QUIT

end;
St_QUIT : Inc(Step)

end;
SocketWrite(Sender, Socket)

end {SocketRead};
procedure TBPOP3.SocketWrite(Sender: TObject;
Socket: TCustomWinSocket);
var Send: String;
begin
Send := 'NOOP';
case Step of
St_USER : Send := 'USER ' + fUser;
St_PASS : Send := 'PASS ' + fPassword;
St_STAT : Send := 'STAT';
St_RETR :
if Status = '+OK' then
Send := 'RETR ' + IntToStr(Mess);

St_QUIT : Send := 'NOOP'; // 'QUIT';
end;
if (Step in [St_USER..St_QUIT]) and (Send <> 'NOOP') then
Socket.SendText(Send + CRLF)

end {SocketWrite};
procedure TBPOP3.ReadMail;
begin
Step := 0;
_Socket.Active := False;
_Socket.Host := fMailServer;
_Socket.Open;
repeat
Application.ProcessMessages

until Step >= St_QUIT
end {ReadMail};

procedure TBPOP3.DeleteMessage(Nr: Integer);
begin
Step := St_QUIT;
if Assigned(LastSocket) then
LastSocket.SendText('DELE '+ IntToStr(Nr) + CRLF);

repeat
Application.ProcessMessages

until Step > St_QUIT
end {DeleteMessage};
end.

on the main ‘loop’ within the new
Robot, which is triggered by a
timer event. The timer event can be
set at a regular, but not too short,
interval of say 10 minutes, which

means that every 10 minutes the
Robot will get activated and use
POP3 to login to the mail server,

➤ Listing 4: DrBobPOP.

24 The Delphi Magazine Issue 36

check the number of messages,
download the messages (but leave
them on the server for now), check
to see if any of these messages is
intended for RobotBob@drbob42
.com, and then forward this mes-
sage (using the SMTP component)
to the relevant group of people,
finally deleting this message from
the mail server.

The TimerTimer event reports the
status on standard output. In fact,
it just ‘appends’ to an existing file
called mailbob.html which I can
check every 10 minutes to see if
there were any new messages, and
if RobotBob/Mail decided to do
something with any of these
messages.

If you check the source code in
Listing 5 for the TimerTimer event,
you may note that I did not include
the list of subscribed people here.
Rather, I only send the message
from RobotBob to myself. You can
either repeat this piece of code for
every subscriber, or modify the
TBSMTP component to allow multi-
ple recipients or a big CC or BCC
list.

In my enhanced version of the
TBSMTP component, I solved this
problem by adding a list of (blind)
receivers to a message, thereby

making sure every subscriber on
the mailing list would get a mes-
sage, but without actually publish-
ing the email address of each
member.

Artificial Life
Now that we know how Robot-
Bob/Mail works, based on a timer
event, let’s think about how it
would actually get activated. Since
we need a timer event from inside a
running program to activate the
Robot itself, it would seem that the
application would need to be
running at all times. Can we do this
with a CGI application? I would
think not, as a CGI application basi-
cally gets executed, generates
some dynamic output, and then
terminates. Generally, CGI applica-
tions are not meant to ‘stay alive’
(as opposed to ISAPI DLLs). we
could try to use an ISAPI DLL, but
these have the disadvantage of
being hard to unload and update.

So, MailBob remains a ‘regular’
application that runs on the web
server. Using a normal form with a
Timer component (and TimerTimer
event) and FormCreate and FormDe-
stroy events to set up and clean up
the RobotBob/Mail things, like
changing to the right directory, ini-
tiating the logfile mailbob.html,
etc.

procedure TMailBox.TimerTimer;
var i,j,k: Integer;
begin
System.Assign(output,'mailbob.html');
Append(output);
writeln;
writeln('MailBob waking up at: ',DateTimeToStr(Now));
try
with TBPOP3.Create(nil) do
try
MailServer := 'pop3.server.com';
User := 'drbob';
Password := '********';
ReadMail;
writeln(Messages:2,' messages waiting...');
Lines := TStringList.Create;
for i:=0 to Pred(Messages) do begin
System.Assign(f,'mailbox');
Rewrite(f);
writeln(f,Message[i]);
System.Close(f);
Lines.LoadFromFile('mailbox');
k := 0;
while (k < Lines.Count) and (Lines[k] <> '') do
Inc(k);

for j:=Pred(k) downto 0 do begin
if (Pos('From: ',Lines[j]) <> 1) and
(Pos('To: ',Lines[j]) <> 1) and
(Pos('Subject: ',Lines[j]) <> 1) and
(Pos('Date: ',Lines[j]) <> 1) then
Lines.Delete(j)

else begin
if Pos('From: ',Lines[j]) = 1 then
From := Copy(Lines[j],7,255)

else if Pos('To: ',Lines[j]) = 1 then
MailTo := Copy(Lines[j],4,255)

else if Pos('Subject: ',Lines[j]) = 1 then
Subject := Copy(Lines[j],10,255)

else
Date := Copy(Lines[j],6,255)

end
end {headers};
if Pos('robotbob@drbob42.com',
LowerCase(MailTo)) > 0 then begin
// repeat for each subscriber,
// or use CC-list in SMTP component
with TBSMTP.Create(nil) do
try
MailServer := 'smtp.server.com';
MessageFrom := 'RobotBob';
MessageTo := 'drbob@drbob.demon.nl';
MessageSubject := Subject;
MessageText.Add(
'Forwarded messages from '+From);

MessageText.Add('');
writeln;
k := 0;
while (k < Lines.Count) and (Lines[k] <> '') do
Inc(k);

for j:=0 to Pred(k) do writeln(Lines[j]);
for j:=k to Pred(Lines.Count) do
MessageText.Add(Lines[j]);

SendMail;
write('forwarded to ',MessageTo);

finally
Free

end;
DeleteMessage(i+1);
writeln(' and deleted from mailhost')

end
end

finally
Free

end;
except
on E: Exception do
writeln('<P>Error: ',E.Message)

end;
System.Close(output)

end;

➤ Listing 5: TimerTimer Event.

The TMailBox.TimerTimer event
contains the code for MailBob that
we saw in the previous listing. Note
that we set the Application.Show-
MainFormproperty to False, indicat-
ing that the main form (TMailBox)
should remain invisible at all
times, so the webmaster at the
console won’t see our application
running.

Most of the time, the application
does nothing, it simply waits for
the TimerTimer event to fire every
10 minutes (every 600000 millisec-
onds). This ensures that perform-
ance on the web server does not
suffer from this application that
should be running at all times.

RobotBob/Start
Now that we’ve decided to make
RobotBob/Mail a regular applica-
tion, it’s time to figure out how to
actually start this application
remotely (I don’t have physical
access to my web server machine,
which is located somewhere in the
USA). I decided to use the easiest
way I could think of: a call to
WinExec made from a regular CGI
application.

Note that we do need to ensure
that we can find the executable, so
we may need to change directo-
ries. It’s also important to make
sure that only one instance of

26 The Delphi Magazine Issue 36

RobotBob/Mail gets started, and
we can ensure that by checking a
call to FindWindow, where TApplica-
tion is the type of every Delphi
application main Window, and
MailBob is the name of that main
Window in our case.

Listing 7 shows the code used to
start RobotBob/Mail remotely, and
the effect can be seen Figure 3.
Note that a WinExec value higher
than 32 means success, so Robot-
Bob/Mail is now up and running.

RobotBob/Mail
Once RobotBob/Mail is running,
we can check the logfile to see if
new messages are waiting and
whether or not RobotBob/Mail
decided to process them.

In real life, RobotBob/Mail now
handles two mailing lists as well as

program MailBob;
{$R MAILBOB.DFM}
{$I-,O+}
uses
Forms, Extctrls, SysUtils, Classes, DrBobPop, DrBobEml;

type
TMailBox = class(TForm)
Timer: TTimer;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure TimerTimer(Sender: TObject);

private
From,MailTo,Subject,Date: ShortString;
Lines: TStringList;
f: Text;

end;
procedure TMailBox.FormCreate;
begin
ChDir('..');
ChDir('RobotBob');
System.Assign(output,'mailbob.html');
Rewrite(output);
writeln('<HTML>');
writeln('<BODY BACKGROUND="/gif/back.gif">');
writeln('<HEAD>');
writeln('<TITLE>RobotBob/Mail</TITLE>');
writeln('</HEAD>');

writeln('');
writeln('<H1>RobotBob/Mail v1.0</H1>');
writeln('');
writeln('<PRE>');
writeln('MailBob initiated at: ',DateTimeToStr(Now));
System.Close(output);
Timer.Enabled := True

end {FormCreate};
procedure TMailBox.FormDestroy;
begin
System.Assign(output,'mailbob.html');
Append(output);
writeln;
writeln('MailBob closing down: ',DateTimeToStr(Now));
writeln('</BODY>');
writeln('</HTML>');
System.Close(output)

end {FormDestroy};
{ see previous listing for TMailBox.TimerTimer event code }
var MailBox: TMailBox;
begin
Application.Initialize;
Application.ShowMainForm := False;
Application.CreateForm(TMailBox, MailBox);
Application.Run

end.

➤ Listing 6: MailBob.
an auto-response list (which actu-
ally replies to a message to send to
it). The latter can be tried at
WebDoc@drbob42.com, which is
installed as an email search engine
interface to a Delphi Internet Pro-
gramming FAQ on my website at
www.drbob42.com/faq. Send a
message to WebDoc@drbob42.
com to find out more.

RobotBob/Kill
Being able to load RobotBob/Mail
remotely is nice, but we should
also be able to unload it, otherwise
we’re no better off than using an
ISAPI DLL. Fortunately, anything
that we can load with WinExec can
be unloaded by telling it to quit.
This can be done by sending a
WM_QUIT message, for example, or a
WM_CLOSE message, or a WM_DESTROY
message (or all three of them just
to be sure).

program StartBob;
{$APPTYPE CONSOLE}
{$I-}
uses
Windows;

begin
writeln('content-type: text/html');
writeln;
writeln('<HTML>');
writeln('<HEAD>');
writeln('<TITLE>RobotBob/Start</TITLE>');
writeln('</HEAD>');
writeln('<BODY BACKGROUND="/gif/back.gif">');
writeln('');
writeln('<H1>RobotBob/Start v1.0</H1>');
writeln('<HR>');
writeln('<P>');
ChDir('cgi-bin');
if FindWindow('TApplication','MailBob') = 0 then begin
writeln('WinExec RobotBob/Mail = ');
writeln(WinExec('MailBob.exe',SW_NORMAL))

end else
writeln('RobotBob/Mail already running...');

writeln('</BODY>');
writeln('</HTML>')

end.

➤ Listing 7: StartBob.

In practice, the CGI application
RobotBob/Kill works just fine to
remotely bring RobotBob/Mail
down. And we can use these tech-
niques to remotely start or stop
any application on a web server.
As long as we have initial permis-
sion to upload CGI applications
ourselves, that is, and as long as
the NT security settings allow us to
do so. Something to keep in mind.

Since the web server is shut
down and rebooted every day at
4.00am (local US time), this means
I seldom need to actually run
RobotBob/Kill, only if I want to
upload a new version of Robot-
Bob/Mail. And I need to run Robot-
Bob/Start every morning to get
RobotBob up and running again.

This could be automated as well,
using schedulers or registry set-
tings (turning RobotBob/Mail into
a Windows NT Service comes to
mind). But I will leave it as an exer-
cise for you to ponder on that one.
For now, I think we’ve seen enough
artificial life (with or without
intelligence).

➤ Figure 3

August 1998 The Delphi Magazine 27

Next Time...
Next time, I’ll look inside the Delphi 4 Client/Server box
and report on the new internet components, both the
Web Modules and others, including a few words on
MiddleWare support with CORBA and MIDAS.

Bob Swart (aka Dr.Bob, visit www.drbob42.com) is a
professional knowledge engineer technical consult-
ant using Delphi, C++Builder and JBuilder for Bole-
sian (www.bolesian.com) and freelance technical
author. In his spare time, Bob likes to watch video
tapes of Star Trek Voyager and Deep Space Nine with
his 4-year old son Erik Mark Pascal and his 1.5-year old
daughter Natasha Louise Delphine.

program KillBob;
{$APPTYPE CONSOLE}
{$I-}
uses
Windows, Messages;

begin
writeln('content-type: text/html');
writeln;
writeln('<HTML>');
writeln('<HEAD>');
writeln('<TITLE>RobotBob/Kill</TITLE>');
writeln('</HEAD>');
writeln('<BODY BACKGROUND="/gif/back.gif">');
writeln('');
writeln('<H1>RobotBob/Kill v1.0</H1>');
writeln('<HR>');
writeln('<P>');
ChDir('cgi-bin');
writeln('Killing RobotBob/Mail...
');
if FindWindow('TApplication','MailBob') <> 0 then begin
writeln('Killing RobotBob/Mail...
');
PostMessage(FindWindow('TApplication','MailBob'),
WM_DESTROY,0,0);

PostMessage(FindWindow('TApplication','MailBob'),
WM_CLOSE,0,0);

PostMessage(FindWindow('TApplication','MailBob'),
WM_QUIT,0,0)

end;
writeln('<P>Killed.');
writeln('</BODY>');
writeln('</HTML>')

end.

➤ Listing 8: KillBob.

➤ Figure 4

	Agents And Robots
	RobotBob/FTP
	Instructions? CGI
	Response By Email
	Instructions By Mail
	Delphi Dynamic Arrays
	RobotBob/Mail: Distribution List
	Artificial Life
	RobotBob/Start
	RobotBob/Mail
	RobotBob/Kill
	Next Time...

